

Die Rheinwasser-Untersuchungsstation (RUSt) Mainz-Wiesbaden

- befindet sich unmittelbar neben der Theodor-Heuss-Brücke (A) bei Rheinkilometer 498,5;
- wird von Hessen und Rheinland-Pfalz gemeinsam finanziert;
- wird vom Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz betrieben

und

• ist Bestandteil des Deutschen Untersuchungsprogramms Rhein.

Die RUSt (B) dient der

- kontinuierlichen Überwachung der Gewässerbeschaffenheit durch Messung physikalischer Kenngrößen und durch Bestimmung der Konzentrationen von Stoffen bzw. Stoffgruppen;
- Gegenüberstellung der Messwerte mit gesetzlichen Zielen und Normen

sowie

• der Erkennung und Verfolgung von Schadensfällen.

Messstellen

- Um Vergleiche über dem Flußquerschnitt anstellen zu können, wird mittels der an den vier Brückenpfeilern angeordneten Auslegern 1 - 4 dem Rhein kontinuierlich Wasser entnommen, in separaten hier teilweise gepumpt und analysiert.
- Ca. 1 km stromaufwärts der RUSt befindet sich am rechten Ufer die Mündung des Mains. Wasserproben der Ausleger 1 - 3 zeigen den Zustand des Rheins ohne den Main. Die Messwerte werden zusammengefasst und in pink dargestellt.
- Die Messwerte des Auslegers 4 werden sehr stark vom Main beeinflusst und sind in blau dargestellt.

in

die

RUSt

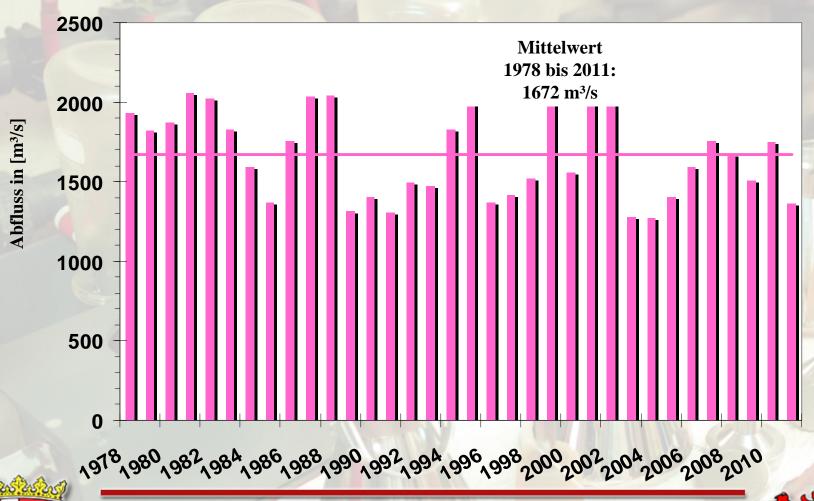
Der Abfluss eines Flusses

• ist das Wasservolumen, das einen bestimmten Querschnitt (des Gewässers) pro Zeiteinheit (z.B. pro Sekunde) durchfließt

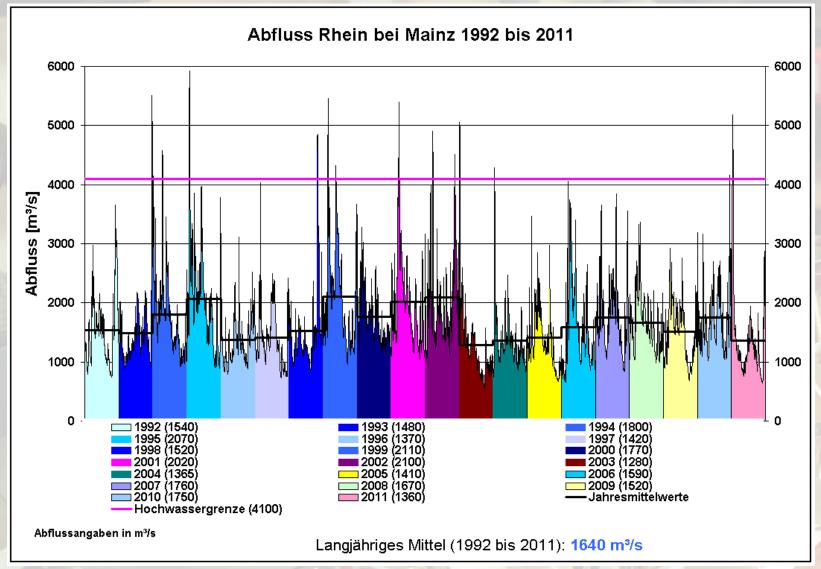
und

• resultiert aus den Niederschlägen im Einzugsgebiet des Gewässers.

Ein erhöhter Abfluss wird Hochwasser genannt und ist


- für den Fluss ein natürliches Geschehen,
- für den flussnah wohnenden Menschen eine Gefahr, die Schaden verursacht.

Ursprüngliche (natürliche) Flussökosysteme leben mit und besonders von Hochwasserereignissen.

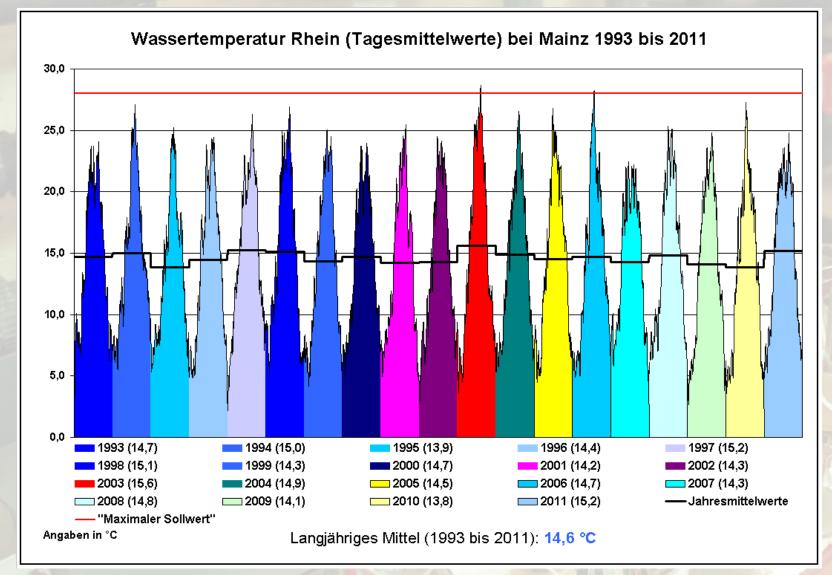


Abfluss-Jahresmittelwerte des Rheins bei Mainz von 1978 bis 2011

Die Temperatur eines Flusses

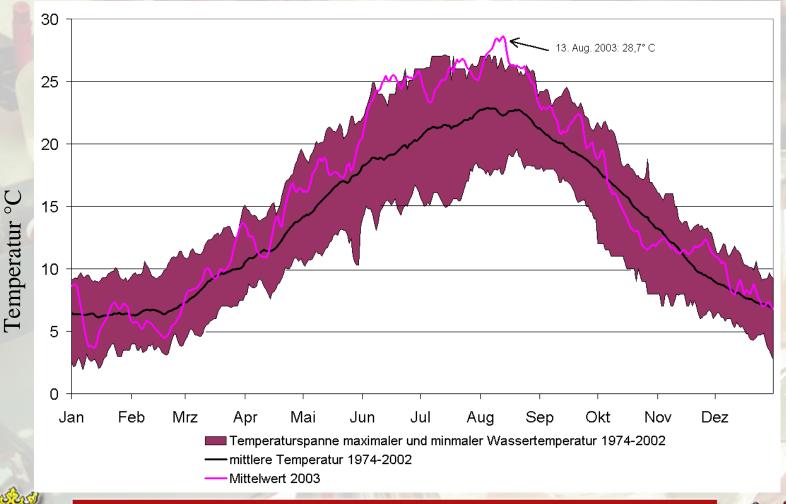
- resultiert aus dem Klima oder Wetter im Einzugsgebiet des Gewässers
- resultiert zu geringem Anteil aus Wärmeeinleitungen des Menschen

Folgen der Wärmeeinleitungen:


- die Frühjahrserwärmung beginnt eher, die Winterabkühlung später => längerer Sommer
- die durchschnittliche Jahreswassertemperatur in Einleitungsnähe ist höher => Paradies für thermophile Lebewesen

Temperatur sollte 28 °C nicht überschreiten ("Fischgewässerrichtlinie" der EU)

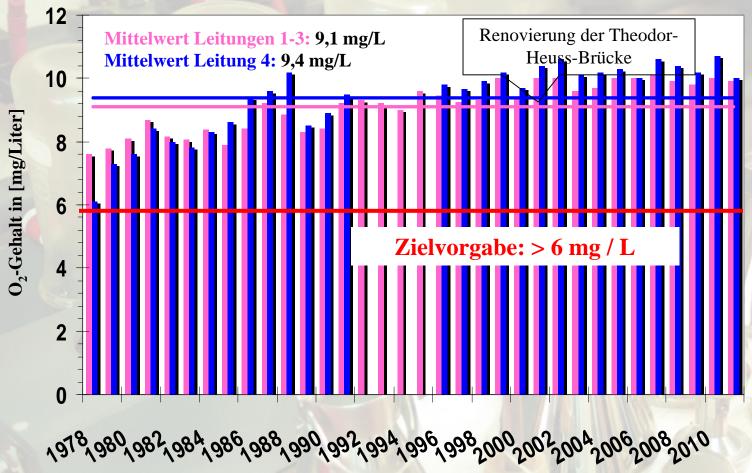
Grund: Die Fische, die derzeit im Rheineinzugsgebiet leben sind größtenteils während der letzten Eiszeit heimisch geworden und bevorzugen "kalte" Gewässer. Kurzfristige Temperaturüberschreitungen sind verkraftbar.



Temperaturschwankungen des Rheinwassers 1974 bis 2003

Der Sauerstoff O₂

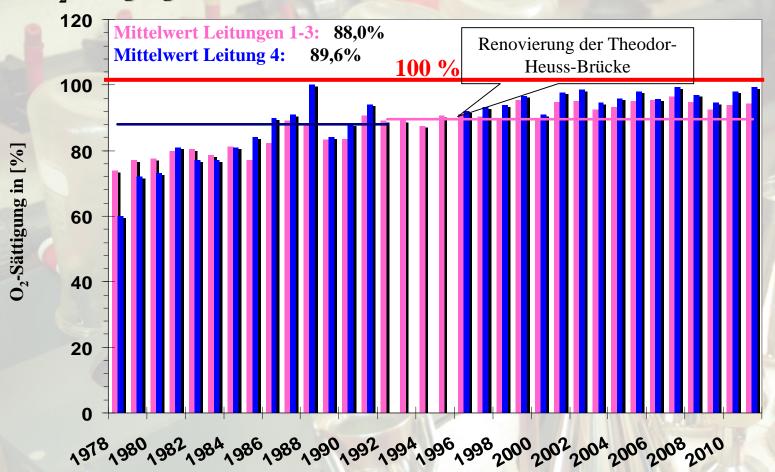
ist f
ür nahezu alle Organismen lebensnotwendig.


Die im Wasser gelöste Menge an Sauerstoff muss mindestens

- 2 mg/L betragen, damit pflanzliches und tierisches Leben möglich ist;
- 6 mg/L betragen, damit auch anspruchsvolle Arten im Wasser überleben können.

Sauerstoff-Jahresmittelwerte des Rheins bei Mainz von 1978 bis 2011

Die Sauerstoffsättigung


• gibt an, wie viel des maximal möglichen gasförmigen Sauerstoffs im Wasser gelöst ist.

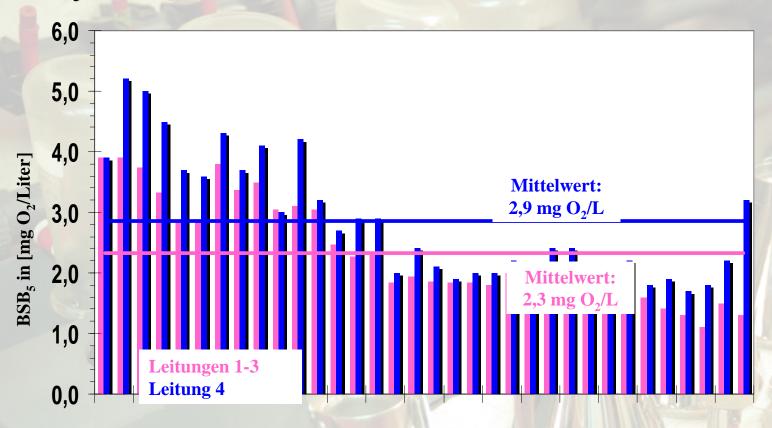
Die Sauerstoffsättigung sinkt mit steigender Wassertemperatur und fallendem Druck.

O₂-Sättigung-Jahresmittelwerte des Rheins bei Mainz von 1978 bis 2011

Der Biochemische Sauerstoffbedarf in 5 Tagen (BSB₅)

- charakterisiert die Konzentration der organischen Verbindungen im Wasser und
- gibt an, welche Menge an Sauerstoff notwendig ist, um im Wasser be-findliche organische Stoffe durch biochemische Oxidation in 5 Tagen ab-zubauen.

Der BSB₅ ist ein wichtiges Kriterium


- für die Bestimmung des Abwasseranteils im Oberflächenwasser und
- wird für die Begutachtung der Qualität von Gewässern sowie Einleitungen in Gewässern (wie z.B. Kläranlagenabläufe) herangezogen.

Je geringer der Wert des BSB₅ ist, desto besser ist die Wasserqualität.

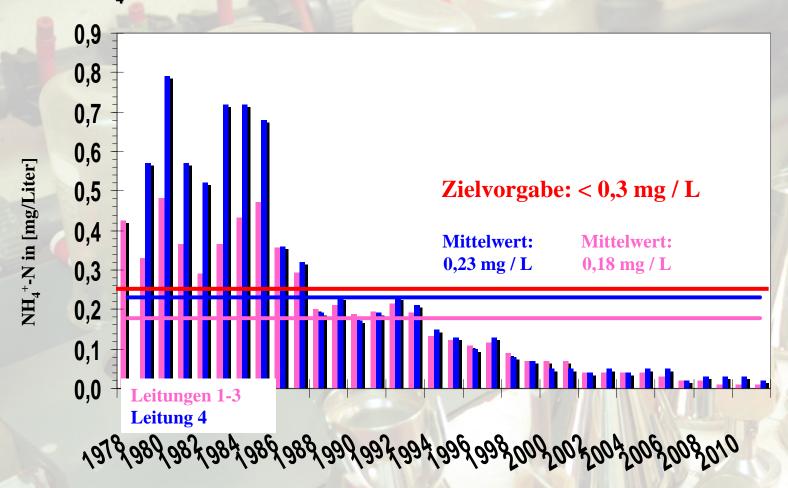
BSB₅/Zehrung-Jahresmittelwerte des Rheins bei Mainz von 1978 bis 2011

Der Ammonium-Stickstoff NH₄⁺-N

ist ein N\u00e4hrstoff f\u00fcr das Pflanzenwachstum

und

- gelangt über zwei Pfade in die Gewässer:
 - a) in der Hauptmenge punktuell über Kläranlagen
 - b) in geringeren Mengen diffus über Einträge aus der Landwirtschaft.

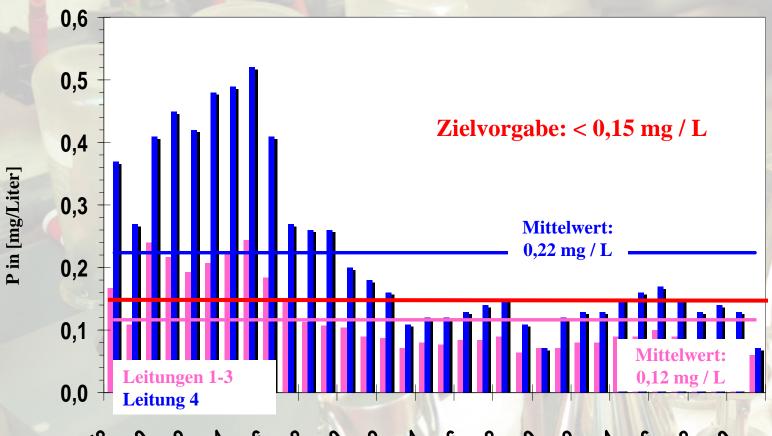

Die NH₄-N-Konzentration sinkt hauptsächlich durch

• Oxidation des Ammonium-Stickstoffs zu Nitrit (Einführung von Nitrifizierungsstufen in Kläranlagen seit Mitte der 80er Jahre).

NH₄⁺-N-Jahresmittelwerte des Rheins bei Mainz von 1978 bis 2011

Der Gesamt-Phosphat Phosphor (P)

- ist ein Maß für die Menge des Nährstoffes Phosphor im Wasser;
- und
- ein wesentlicher Faktor für das Wachstum von Pflanzen, d.h. eine hohe Phosphorkonzentration führt zu einer hohen pflanzlichen Biomasse.


Die Gesamt-Phosphat P Konzentration sinkt

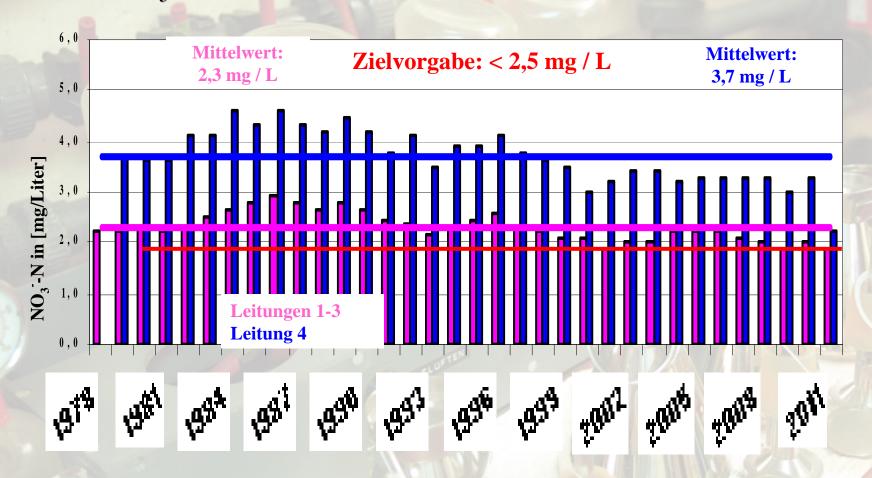
• seit Mitte der achtziger Jahre durch die Einführung phosphatfreier Waschmittel und die Einführung der Phosphatfällung in den Kläranlagen.

Gesamt-P-Jahresmittelwerte des Rheins bei Mainz von 1978 bis 2011

401840801085408840884088408010050084008500500500850085010

Der Nitrat-Stickstoff NO₃-N

- dient wie Ammonium-Stickstoff (NH₄⁺-N) zum Pflanzenwachstum, ist Hauptbestandteil von Pflanzendüngern,
- wirkt jedoch als Depot, d.h. erst durch chemische Umwandlungen im Boden oder in der Pflanze entsteht aus dem Nitrat-N der verwertbare Ammonium-Stickstoff,
- gelangt auf gleichem Wege wie Ammonium-Stickstoff in die Gewässer
 - a) punktuell über Kläranlagenausläufe,
 - b) diffus über Einträge aus der Landwirtschaft.

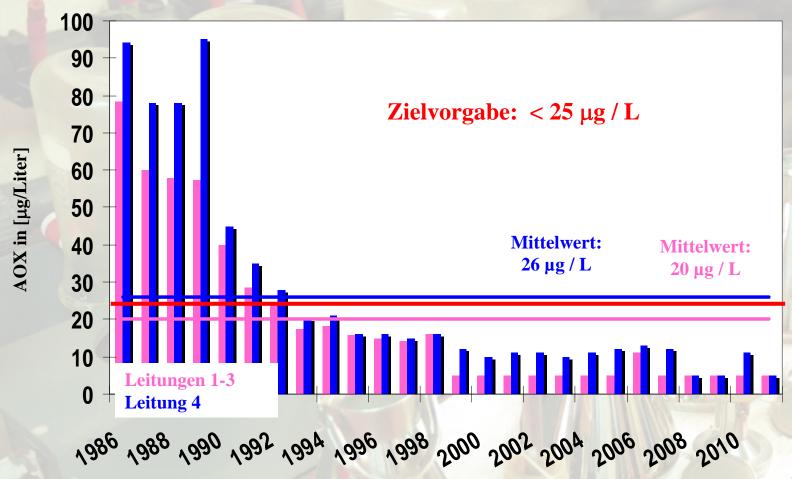

Die Nitrat-Konzentration sinkt durch

- Abbau des Nitrats zu Sauerstoff und Stickstoff (Einführung von Denitrifizierungsstufen in allen größeren Kläranlagen)
- Reduktion der Einträge aus den landwirtschaftlich genutzten Flächen.

NO₃-N-Jahresmittelwerte des Rheins bei Mainz von 1978 bis 2011

Der Summenparameter AOX

• ist ein Maß für die Konzentration von adsorbierbaren organischen Halogenverbindungen in Wasser.


Adsorbierbare organische Halogenverbindungen (X) sind

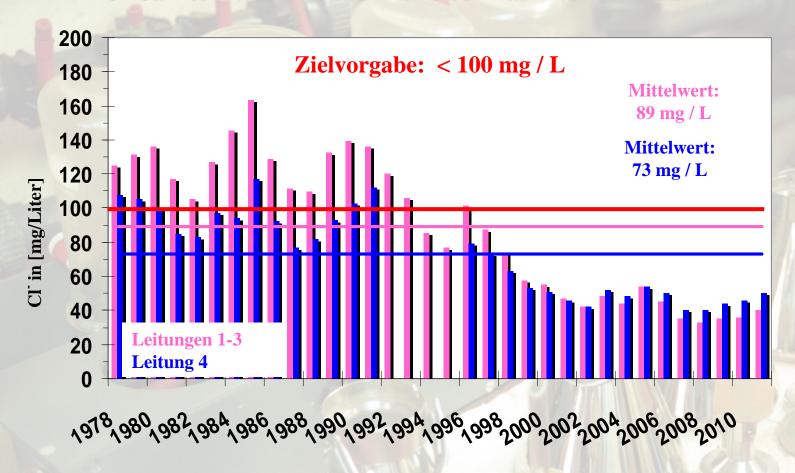
- u.a. Lösungsmittel (z.B. Chloroform), Pestizide (z.B. Atrazin, Lindan), Arzneimittel (z.B. Clofibrinsäure) oder Ausgangsverbindungen von Kunststoffen (z.B. Vinylchlorid). Sie können auch aus chlorhaltigen Reinigungmitteln entstehen
- in der Regel toxisch und sehr stabil.

AOX-Jahresmittelwerte des Rheins bei Mainz von 1986 bis 2011

Das Chlorid Cl

- ist das negativ geladene Teilchen (Anion) des chemischen Elements Chlor;
- kommt überall in der Natur vor (das bekannteste Beispiel ist die Verbindung mit Natrium zu Koch- oder Steinsalz: Natriumchlorid NaCl).

Chloride


- gelangen durch das Auswaschen leicht löslicher Chloridverbindungen aus geologischen Formationen in die Gewässer;
- werden definiert in erlaubten Konzentrationen durch Fabriken in den Rhein eingeleitet

Die natürliche Konzentration in Fließgewässern ist normalerweise kleiner 25 mg / Liter.

Cl'-Jahresmittelwerte des Rheins bei Mainz von 1978 bis 2011

Fazit

- Seit Inbetriebnahme der Rheinwasser-Untersuchungsstation Mainz-Wiesbaden zeigt sich ein positiver Trend der Gewässerbeschaffenheit.
- Bei allen Stoffen bzw. Stoffgruppen werden die Zielvorgaben in den letzten Jahren erreicht.
- Mit Ausnahme des Nitrats nehmen darüber hinaus die Belastungen seit Jahren ab.
- Messung und Bewertung ermöglichen eine Gegenüberstellung des Er-reichten mit Zielen und Normen. Weitere Verbesserungen der Gewässerqualität werden angestrebt gemäß dem Motto:

Das Erreichte bewahren noch bestehende Probleme lösen neue Herausforderungen annehmen!

